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As can be seen from Figure 1, the total assets of the Halyk Bank is about 3.7 times larger than that of 
Kaspi Bank, however the market capitalization figures show the rather opposite picture. Namely, the 
market cap of Kaspi Bank is about 6.4 times higher than that of Halyk Bank. This difference is a result of 
the digital disruption initiated by Kaspi Bank in the Kazakhstan�[s banking Sector. 
 
    
 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Comparison of the Equity and Market Capitalization 
 
The effect of digital disruption is even more evident when comparing the equity size with the market 
cap for these two banks. It can be seen from Figure 2 that the market cap of Halyk Bank is almost the 
same as its equity, while the market cap of Kaspi Bank is more than 30 times its equity �t a truly 
remarkable result. This is the result of the market expectation of higher returns due to synergy effects of 
an innovative digital ecosystem set up by Kaspi Bank, which incorporates into the ecosystem the banking 
services with Fintech solutions, electronic marketplace and loyalty platform in association with a large 
number of merchants.  
 
In order to evaluate the effec





 
 

 
 

Fig. 4 Comparison of the Operating Profit and Asset Turnover 
 
The next step in our analysis will be the identification of the reasons behind the 2.28 times higher asset 
turnover of Kaspi Bank in comparison to Halyk Bank. This analysis is presented in Figure 5, which gives 
the breakdown of the asset turnover in terms of interest revenues and fees & commissions. 
 
The analysis of the financial results presented in Figure 5 shows that the interest revenue per asset of 
Kaspi Bank is 1.63 times higher than that of Halyk Bank. This can be logically attributed to the more 
retail-oriented portfolio of Kaspi Bank and to a lesser accent on mortgage loans that are traditionally 
characterized with lower APRs.   
 
However, the more prominent picture emerges 



 

 
 

Fig. 5 Breakdown of the asset turnover into interest revenues and fees & commissions 
 
Even more amazing is the fact that the revenue of Kaspi Bank generated from fees & commissions is 
almost exactly equal to its interest income (as shown in Figure 5), which is an extremely rare case in the 
banking industry. This fact indicates on the effectiveness of cross-sectoral cooperation and the synergy 
effects derived from such cooperation. The result is the high profitability of the ecosystem delivering 
full-scale digital services to large segments of customers in a convenient and comfortable manner.  
 
 
 
 
 
 
 
 
 
 

Fig. 6  
 
 
 
 

Fig. 6 Benefits of a Digital Ecosystem Model 
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If the processX cannot make jumps larger than 1 (which is natural to
assume in this context), then solution of this equation is

L t = L1 (1 � E t (�X )); (5)

whereEt (�X ) is the stochastic exponent of the process�X and the extreme
length L1 is assumed to be a constant. Note thatL t de�ned by this model
is increasing process and it coincides with the von Bertalan�y growth curve
when X is a deterministic subordinatorX t = kt.

This approach (as all existing) has a drawback as a growth model, since
the asymptotic length of the �sh is assumed to be a constant. This implies
that the variation of �sh length tends to zero, which is not realistic, as it
would imply that all individuals should reach the same limiting size. In
order to overcome this problem it seems natural to assume that the extremal
size of a �sh is itself a random variable, thus accounting for the individual
variability. Therefore, it is natural to use Backward SDE's (instead of the
forward SDEs) with the random boundary condition at the end equal to the
asymptotic length of a �sh.

To generalize the von Bertalan�y model when the extreme lengthL1 is a
random variable, let �rst consider the simple case and only assume thatL1

is a bounded random variable measurable with respect toF W
1 = _ t�0 F W

t ,
where W is a Brownian Motion and (F W

t ; t � 0) is the �ltration generated
by W.

We write this model as a solution of the Backward Stochastic Di�erential
equation (BSDE)

Yt =
Z t

0
Ys

Ke �Ks

1 � e�Ks
ds+

Z t

0
ZsdWs; (6)

with the boundary condition

Y1 = lim
t!1

Yt = L1 : (7)

The solution process to equation (6)-(7) is

L t = E(L 1 jF W
t )[1 � e�Kt ]: (8)

More exactly the solution of (6)-(7) is a pair (Yt ; Zt )

Yt = L t ; Zt = ' t (1 � e�Kt );
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where L t is de�ned by (8) and ' t is the integrand from the integral repre-
sentation of the martingale

E(L 1 jF W
t ) = EL 1 +

Z t

0
' sdWs;

which can be immediately veri�ed by the integration by part formula.
Note that, since (8) implies

EL t = EL 1 [1 � e�Kt ];

the expectation ofL t follows the Von Bertalan�y-type pattern with L1 re-
placed byEL 1 .

Remark that, if in (8) instead of exponential distribution function 1� e�Kt

we shall take general continuous distribution functionG(t), then the process
L t = E(L 1 jF W

t )G(t) will satisfy the BSDE

Yt =
Z t

0

Ys

G(s)
dG(s) +

Z t

0
ZsdWs; (9)

with the same boundary condition (7).
We shall generalize expression (5) (see Theorem 1) assuming thatL1

is a random variable and consider this variable as a boundary condition at
in�nity of a BSDE for L t driven by a subordinatorX and a Brownian Motion
W, independent ofX . The linear BSDEs derived in the paper di�er from
classical cases by considering not integrable coe�cients on the in�nite time
interval. Under additional assumption that the extreme sizeL1 of a �sh is a
random variable measurable with respect to the� -algebraF W

1 generated by
the Brownian Motion W, i.e., when two sources of randomness, the random
individual variability (related with L1 ) and the environmental randomness
(related with the processX t ), are independent, the BSDE takes simpler and
more natural form (see Corollary 1).

2 The main results.

Let X = ( X t ; t � 0) be a Levy process with a�ne process�t; � > 0,
with zero Brownian part and with positive jumps (a subordinator). Let
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De�nition. Let V be the class of cadlag processes (Yt ; t � 0), such that
the family of random variables (Y� ; � 2 T ) is uniformly integrable, whereT
is the set of stopping times.

Theorem 1. Let X be a Levy process with increasing paths (a subor-
dinator) and let �X t < 1 for all t � 0. Assume that L1 is an integrable
F1 -measurable random variable.



= �
X

r<s�t

Es� (�X )�X s�
1 � E s� (�X )

��
1 � E s� (�X ) + Es� (�X )�X s

� �
Z t

r

� Es(�X )
(1 � E s(�X ))2

ds =

= �
Z t

r

Z

R+

Es� (�X )x
�
1 � E s� (�X )

��
1 � E s� (�X ) + Es� (�X )x

� �(dxds)�
Z t

r

� Es(�X )
(1 � E s(�X ))2

ds

= �
Z t

r

Z

R+

H (s; x)
1 � E s� (�X )

�(ds; dx) �
Z t

r

� Es(�X )
(1 � E s(�X ))2

ds: (16)

By the Itô formula and (16) for any r > 0

L t

1 � E t (�X )
�

L r

1 � E r (�X )
= (17)

=
Z t

r

1
1 � E s� (�X )

dAs +
Z t

r

1
1 � E s� (�X )

dMs+

+
Z t

r
L s� d(1 � E s� (�X )) �1 ) + [ L; (1 � E (�X )) �1 ]t � [L; (1 � E (�X )) �1 ]r =

=
Z t

r

1
1 � E s� (�X )

dAs +
Z t

r

1
1 � E s� (�X )

dMs �
Z t

r

�L sEs� (�X )
(1 � E s� (�X ))2

ds

�
Z t

r

Z

R+

L s�
H (s; x)

1 � E s� (�X )
�(ds; dx) �

Z t

r

Z

R+

K (s; x)
H (s; x)

1 � E s� (�X )
�(ds; dx)

�
Z tX1s

L s�
H

r)

1 .111000 Es� (�X)
0 T249_0 11.955 Tf
())Tj
/T1_1 11.955 Tf
-244.317 -37.428 Td
(�)Tj
/T1_2 11.955 Tf
11.291 16.272 Td
(Z)Tj
/T1_3 7.97 Tf
11.955 -3.155 Td
(t)Tj
-5.313 -23.91955 Tf
(X)Tj
/T1_0 11.955 Tf
24.506H;17 13 -23.9R8T(1)Tj
/T1_5 1111.793 Td
(s)Tj
/T1_4 

L s�
H

r)

1 � E s� (�X )



Since by (13) the left-hand side of (18) is a martingale on the interval
[r; 1] for any r > 0, the bounded variation part in (18) should be equal to
zero. Therefore,

A t � A r = �



By the boundary condition (12) and the Levy theorem, passing to the limit
as t ! 1 in (22) we obtain that

� = Y1 = L1 ;

which by arbitrariness of r > 0 and right-continuity of Y and M t implies
that Yt = L t = E(L 1 jF t )[1 � E t (�X )] for any t � 0.









where w = ( wR ; w� ) is a standard two-dimensional Wiener process, de-
�ned on complete probability space (
; F ; P), F w = (F w

t )0�t�T is the P-
augmentation of the natural �ltration F w

t = � (ws; 0 � s � t), 0 � t � T,
generated byw, f (�) is a continuous one-to-one positive locally bounded
function (e.g., f (x) = ex ), � = (� 1; : : : ; � m ), m � 1, is a vector of unknown
parameters, and", 0 < " < 1, is a small number. Assume that the system
(1.1) has an unique strong solution.

Suppose that the sample path (ys)0�s�t comes from the observations
of process (eYs)0�s�t with distribution eP "

� from the shrinking contamination
neighborhood of the distributionP "

� of the basic processY = ( Ys)0�s�t . That
is,

d eP "
�

dP"
�

j F w
t = Et ("N " ); (1.2)

where N " = ( N "
s )0�s�t is a P "

� -square integrable martingale,Et (M ) is the
Dolean exponential of martingaleM .

In the di�usion-type processes framework (1.2) represents the Huber gross
error model (as it explain in Remark 2.3). The model of type (1.2) of con-
tamination of measures for statistical models with �ltration was suggested



2 Construction of CULAN estimators

2.1 Basic model

The basic model of observations is described by the SDE

dYs = a(s; Y; � ) ds+ " dws; Y0 = 0; 0 � s � t; (2.1)

where t is a �xed number, w = (w s)0�s�t is a standard Wiener process
de�ned on the �ltered probability space (
; F ; F = ( F s)0�s�t ; P) satisfying
the usual conditions, � = ( � 1; : : : ; � m ), m � 1, is an unknown parameter
to be estimated, � 2 A � Rm , A is an open subset ofRm , ", 0 < " � 1,
is small parameter (index of series). In our further considerations all limits
correspond to" ! 0.

Denote by (Ct ; Bt ) a measurable space of continuous on [0; t] functions
x = ( xs)0�s�t with � -algebraBt = � (x : xs; s � t). Put Bs = � (x : xu; u �
s).

Assume that for each� 2 A , the drift coe�cient a(s; x; � ), 0 � s � t,
x 2 Ct is a known nonanticipative (i.e.,Bs-measurable for eachs, 0 � s � t)
functional satisfying the functional Lipshitz and linear growth conditionsL:

L
ja(s; x1; � ) � a(s; x2; � )j � L1

Z s

0
jx 1

u � x2
u j dku + L2jx 1

s � x2
sj;

ja(s; x; � )j � L1

Z s

0
(1 + jx u j) dku + L2(1 + jx sj);

whereL1 and L2 are constants, which do not depend on� , k = (k (s))0�s�t

is a non-decreasing right-continuous function, 0� k(s) � k0, 0 < k 0 < 1,
x1; x2 2 Ct .

Then, as it is well known (see, e.g., Lipster and Shiryaev [2]), for each� 2
A , the equation (2.1) has an unique strong solutionY " (� ) = ( Y "

s (� ))0�s�t

and, in addition (see Kutoyants [3]),

sup
0�s�t

jY "
s (� ) � Y 0

s (� )j � C" sup
0�s�t

jwsj P-a.s.;

with some constantC = C(L 1; L2; k0; t), where Y 0(� ) = ( Y 0
s (� ))0�s�t is the

solution of the following nonperturbated di�erential equation

dYs = a(s; Y; � ) ds; Y0 = 0: (2.2)

3
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Change of initial problem of estimation of parameter� by the equivalent
one, when the observations are modelled according to the following SDE

dXs = a" (s; X ; � ) ds+ dws; X 0 = 0; (2.3)

wherea" (s; x; � ) = 1
" a(s; "x ; � ), 0 � s � t, x 2 Ct , � 2 A .

It it clear that if X " (� ) = ( X "
s (� ))0�s�t



is well-de�ned, and moreover, uniformly in� on each compact,

P "
� � lim

"!0
"2I "

t (� ) = I 0
t (� ); (2.7)

where

I 0
t (� ) :=

Z t

0
_a(s; Y0(� ); � )[_a(s; Y0(� ); � )]0ds:

For each 2 	, introduce the functional  " (s; x; � ) := 1
"  (s; "x; � ) and

matrices �  
t" (� ) and   

t" (� ):

�  
t" (X; � ) : =

Z t

0
 " (s; X ; � )[ " (s; X ; � )]0ds; (2.8)

  
t" (X; � ) : =

Z t

0
 " (s; X ; � )[_a" (s; X ; � )]0ds: (2.9)

Then from (2.6) it follows that uniformly in � on each compact,

P "
� � lim

"! 0
"2�  

t" (� ) = �  
t0(� ); (2.10)

P "
� � lim

"! 0
"2  

t" (� ) =   
t0(� ); (2.11)

where the matrices � t0(� ) and   
t0(� ) are de�ned as follows:

�  
t0(� ) =

Z t

0
 (s; Y 0(� ); � )[ (s; Y 0(� ); � )]0ds; (2.12)

  
t0(� ) =

Z t

0
 (s; Y 0(� ); � )[_a(s; Y0(� ); � )]0ds: (2.13)

Note that, by virtue of (2.4), (2.5) and _a 2 	, matrices given by (2.8),
(2.9), (2.12) and (2.13) are well de�ned.

Denote by 	 0 the subset of 	 such that for each  2 	 0 and � 2 A ,
rank �  

t0(� ) = m and rank  
t0(� ) = m.

Assume that _a 2 	 0.
For each  2 	 0, de�ne a P "

� -square integrable martingaleL  ;"
t (� ) as

follows:

L  ;"
t (X ; � ) :=

Z t

0
 " (u; X ; � )(dX u � a" (u; X ; � )du): (2.14)

Now we give a de�nition of CULAN



De�nition 2.1. An estimator (�  ;"
t )">0 = ( �  ;"

1;t ; : : : ; �  ;"
m;t )

0
">0 ,  2 	 0, is

called consistent uniformly linear asymptotically normal (CULAN) if it ad-
mits the following expansion:

�  ;"
t = � + [  

t0(� )]�1 "2L  ;"
t (� ) + r  

t" (� ); (2.15)

where uniformly in � on each compact,

P "
� � lim

"! 0
" �1 r  

t" (� ) = 0: (2.16)

It is well known (see Kutoyants [3]) that under the above conditions,
uniformly in � on each compact,

Lf" �1 (�  ;"
t � � ) j P "

� g w! N (0; Vt ( ; � ));

with
Vt ( ; � ) := [  

t0(� )]�1 �  
t0(� )([  

t0(� )]�1 )0; (2.17)

whereL(� j P) denotes the distribution of random vector� , calculated un-
der measureP, symbol \ w!" denotes the weak convergence of measures,
N (0; Vt ( ; � )) is a distribution of Gaussian vector with zero mean and co-
variance matrix Vt ( ; � ).

Remark 2.1. In context of di�usion type processes, theM -estimator (�  ;"
t )">0

is de�ned as a solution of the following stochastic equation:

L  ;"
t (X ; � ) = 0;

whereL  ;"
t (X ; � ) is de�ned by (2.14),  2 	 0.

The asymptotic theory ofM -estimators for general statistical models with
�ltration is developed in Toronjadze [4]. Namely, the problem of existence
and global asymptotic behaviour of solutions is studied. In particular, the
conditions of regularity and ergodicity type are established under whichM -
estimators have a CULAN property.

For our model, in case whenA = Rm , the su�cient conditions for CULAN
property take the form:

(1) for all s, 0 � s � t, and x 2 Ct , the functionals (s; x; � ) and _a(s; x; � )
are twice continuously di�erentiable in � with bounded derivatives satisfying
the functional Lipshitz conditions with constants, which do not depend on� .

6



(2) the equation (w.r.t. y)

� t (�; y ) :=
Z t

0
 (s; Y 0(� ); y)(a(s; Y 0(� ); � ) � a(s; Y0(� ); y)) ds = 0

has a unique solutiony = � .
The MLE is a special case ofM -estimators when = _a.

Remark 2.2. According to (2.7), the asymptotic covariance matrix of MLE
(ba"

t )">0 is [I 0
t (� )]�1 . By the usual technique one can show that for each

� 2 A and  2 	 0, [I 0
t (� )]�1 � Vt ( ; � ), see (2.17), where for two symmetric

matrices B and C the relation B � C means that the matrix C � B is
nonnegative de�nite.

Thus, the MLE has a minimal covariance matrix among allM -estimators.

2.2 Shrinking contamination neighborhoods

In this subsection, we give a notion of a contamination of the basic model
(2.3), described in terms of shrinking neighborhoods of basic measuresfP "

� ,
� 2 A ; " > 0g, which is an analog of the Huber gross error model (see, e.g.,
Hampel et al. [5] and, also, Remark 2.3 below).

Let H be a family of bounded nonanticipative functionalh : [0; t] � Ct �
A ! R1 such that for all s 2 [0; t] and � 2 A , the functional h(s; x; � ) is
continuous at the point x0 = Y 0(� ).

Let for eachh 2 H , � 2 A and " > 0, P ";h
� be a measure on (Ct ; Bt ) such

that

1) P ";h



We call (P";H
� )">0 a shrinking contamination neighborhoods of the basic mea-

sures (P"
� )">0 , and the element (P ";h

� )">0 of these neighborhoods are called
alternative measures (or, simply, alternative).

Obviously, for eachh 2 H and � 2 A , the processN ";h
� = ( N ";h

�;s )0�s�t

de�ned by (2.19) is aP "
� -square integrable martingale. Since under measure

P "
� the processw = ( ws)0�s�t de�ned as

ws := X s �
Z s

0
a" (u; X ; � ) du; 0 � s � t;

is a Wiener process, by virtue of the Girsanov Theorem the processew :=
w + hw; "N ";h

� i is a Wiener process under changed measureP ";h
� . But by the

de�nition,

ews = X s �
Z s

0
(a" (u; X ; � ) + "h " (u; X ; � )) du;

and hence one can conclude thatP ";h
� is a weak solution of SDE

dXs = ( a" (s; X ; � ) + "h " (s; X ; � ))ds + dws; X 0 = 0:

:



Thus
dPn;h

�

dPn
�

= En (" n � N n;n
� ) (2.20)

and the relation (2.18) is a direct analog of (2.20).
2) The concept of shrinking contamination neighborhoods, expressed in

the form of (2.18), was proposed in Lazrieva and Toronjadze [1] for more gen-
eral situation, concerning with the contamination areas for semimartingale
statistical models with �ltration.

In the remainder of this subsection, we study the asymptotic properties
of CULAN estimators under alternatives.

For this aim, we �rst consider the problem of contiguity of measures
(P ";h

� )">0 to (P "
� )">0 .

Let ("n )n�1 , "n # 0, and (� n )n�1 , � n 2 K , K � A is a compact, be
arbitrary sequences.

Proposition 2.1. For each h 2 H , the sequence of measures(P " n ;h
� n

) is
contiguous to sequence of measures(P " n

� n
), i.e.,

(P " n ;h
� n

) / (P " n
� n

):

Proof. From the predictable criteria of contiguity (see, e.g., Jacod and Shiryaev
[6]), it follows that we have to verify the relation

lim
N !1

lim sup
n!1

P " n ;h
� n

n
hn

t

� 1
2

�
> N

o
= 0; (2.21)

wherehn
t ( 1

2) = (h n
s ( 1

2))o�s�t is the Hellinger process of order12 .
By the de�nition of Hellinger process (see, e.g., Jacod and Shiryaev [6]),

we have

hn
t

� 1
2

�
= hn

t

� 1
2

; P " n ;h
� n

; P " n
� n

�
=

1
8

Z t

0
[h(s; "nX ; � n )]2ds;

and sinceh 2 H , and hence is bounded,hn
t ( 1

2) is bounded too, which provides
(2.21).

Proposition 2.2. For each estimator(� "; 
t )">0 with  2 	 0 and each alter-

native (P ";h
� )">0 2 (P ";h

� )">0 , the following relation holds true:

Lf" �1 (�  ;"
t � � ) j P ";h

� g w! N ([  
t0(� )]�1 bt ( ; h ; � ); Vt ( ; � ));

where

bt ( ; h; � ) :=
Z t

0
 (s; Y 0(� ); � )h(s; Y 0(� ); � ) ds:

9
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Proof. Proposition 2.1 together with (2.16) provides that uniformly in� on
each compact,

P ";h
� � lim

"!0
" �1 r  

t" (� ) = 0 ;

and therefore we have to establish the limit distribution of random vector
[  

t0(� )]�1 "L  ;"
t under the measures (P";h� )">0 .

By virtue of the Girsanov Theorem, the processL  ;"
t (� ) = (L  ;"

s (� ))0�s�t

is a semimartingale with canonical decomposition

L  ;"
s (� ) = eL  ;"

s (� ) + b";s ( ; h ; � ); 0 � s � t; (2.22)

whereeL  ;"
t (� ) = ( eL  ;"

s (� ))0�s�t is aP ";h
� -square integrable martingale, de�ned

as follows:

eL  ;"
s (X ; � ) :=

Z s

0
 " (u; X ; � )(dX u � (a" (u; X ; � ) + "h " (u; X ; � ))du);

and

b";s (





Therefore

D t ( ; h; � ) = D t ( e ; h; � ) = jbt ( e ; h; � )j2 + tr �
e 
t0(� ): (2.24)

Denote by H r a set of functionsh 2 H such that for each� 2 A ,
Z t

0
jh(x; Y 0(� ); � )j ds � r;

wherer , r > 0, is a constant.
Since, for eachr > 0,

sup
h2H r

jbt ( e ; h; � )j � const:(r) sup
0�s�t

j e t (s; Y 0(� ); � )j;

where constant depends onr , we call the function e an inuence function of
estimator (�  ;"

t )">0 and a quantity

 �
t (� ) = sup

0�s�t
j e (s; Y 0(� ); � )j

is named as the (unstandardized) gross error sensitivity at point� of esti-
mator (�  ;"

t )">0 .
De�ne

	 0;c =
�

 r



Theorem 2.1. Assume that for given constantc there exists a nondegenerate
m � m matrix A �

c(� ), which solves the equation (w.r.t. matrixA)
Z t

0
 A

c (s; Y 0(� ); � )[_a(s; Y0(� )� )]0ds = Id: (2.28)

Then the function A �
c (�)

c = hc(A �
c(� )_a) solves the optimization problem(2.27).

Proof. (See, e.g., Hampel et al. [5].)
Let A be an arbitrary m � m matrix.
Since for each 2 	 0,

R
 (_a)0 = Id,

R
_a[_a]0 = I 0(� ) (see (2.7)) and the

trace is an additive functional, we have
Z

( � A _a)( � A _a)0 =
Z

  0 � A � A0+ AI 0(� )A 0

(here and below we use simple evident notations for integrals).
Therefore instead of minimizing of tr

R
  0 we can minimize

tr
Z

( � A _a)( � A _a)0 =
Z

j � A _aj2;

and it is evident that a function hc(A _a) minimizes the expression under
integral sign, and hence the integral itself over all functions 2 	 0, satisfying
(2.26).

At the same time, the condition (2.25), generally speaking, can be vio-
lated. But, since a matrix A is arbitrary, we can chooseA = A �

c(� ) from
(2.28) which guarantees the validity of (2.25) with �

c =  A �
c (�)

c .

As we have seen, the resulting optimal inuence function �
c is de�ned

along the processY 0(� ) = (Y 0
s (� ))0�s�t , which is a solution of equation (2.2).

But for constructing optimal estimator we need a function �
c(s; x; � ),

de�ned on whole space [0; t] � Ct � A .
For this purpose, de�ne �

c(s; x; � ) as follows:

 �
c(s; x; � ) =  A �

c (�)
c (s; x; � ) = hc(A �

c(� )_t , which is a solut679 -xl.996r51��
c ()



From (2.9), (2.11), (2.28) and (2.29) it directly follows that

  �
c

t0 (� ) = P "
� � lim

"!0
"2  �

c
t" (� ) =

Z t

0
 �

c(s; Y 0(� ); � )(_a(s; Y0(� ); � ))0ds = Id:

Besides, for each alternative (P";h� )">0 , h 2 H , according to Proposition 2.2,
we have

Lf" �1 (� �;"
t � � ) j P ";h

� g w! N (bt ( �
c ; h; � ); Vt ( �

c ; � )) as " ! 0;

where

bt ( �
c ; h; � ) =

Z t

0
 �

c(s; Y 0(� ); � )h(s; Y 0(� ); � )ds;

and Vt ( �
c ; � ) = �  �

c
t0 (� ).

Hence, the risk functional for estimator (� �;"
t )">0 is

D t ( �
c ; h; � ) = jbt ( �

c ; h; � )j2 + tr �  �
c

t0 ; h 2 H ;

and the (unstandardized) gross error sensitivity of (� �;"
t )">0 is

  �
c
(� ) = sup

0�s�t
j �

c(s; Y 0(� ); � )j � c:

Thus, we may conclude that (��;"t )">0 is the optimal B-robust estimator over
the class of estimators (� ;"t )">0 ,  2 	 0;c, in the following sense: the trace
of asymptotic covariance matrix of (� �;"

t )">0 is minimal among all estimators
(�  ;"

t )">0 with bounded by constantc gross error sensitivity, that is,

�  �
c

t0 (� ) � �  
t0(� ) for all  2 	 0;c:

Note that for each estimator (�  ;"
t )">0 and alternatives (P ";h

� )">0 , h 2 H ,
the inuence functional is bounded by const:(r ) � c. Indeed, we have for
 2 	 0;c,

sup
h2H r

jbt ( ; h; � )j � const:(r) � c := C(r ; c);

and since from (2.24)

inf
 2	 0;c

sup
h2H t2Ht ( ; h; � ) :=2(r; c



over all constantsc, for which the equation (2.28) has a solutionA �
c(� ). This

can be done using the numerical methods.
For the problem of existence and uniqueness of solution of equation (2.28),

we address to Rieder [7].
In the case of one-dimensional parameter� (i.e., m = 1), the optimal

level c� of truncation is given as a unique solution of the following equation
(see Lazrieva and Toronjadze [1])

r 2c2 =
Z t

0
[_a(s; Y0(� ); � )]c

�c _a(s; Y0(� ); � )ds �
Z t

0
([_a(s; Y0(� ); � )]c

�c )2ds;

where [x]b
a = ( x ^ b)_ a and the resulting function

 � (s; x; � ) = [_a(s; x; � )]c
�c ; 0 � s � t; x 2 Ct ;

is (	 0; H r ) optimal in the following minimax sense:

sup
h2H r

D t ( � ; h; � ) = inf
 2	

sup
h2H r

D t ( ; h; � ):

Appendix

Important feature of the stochastic volatility model is that volatility process
Y is unobservable (latent) process. Clear that full knowledge of the model
of the processY is necessary and hence one needs to estimate the unknown
parameter � = ( � 1; : : : ; � m ), m � 1.

A variety of estimation procedures are used, which involve either direct
statistical analysis of the historical data or the use of implied volatilities
extracted from prices of existing traded derivatives.

Consider the method based on historical data.
Fix the time variable t. From observations Yt ( n)

0
; : : : ; Yt ( n)

n
, 0 = t (n)

0 <

� � � < t (n)
n = t, max

j
[t (n)

j +1 � t (n)
j ] ! 0 as n ! 0, calculate the realization of

yield processRt =
Rt

0
dYs
Ys

, and then calculate the sum

Sn (t) =
n�1X

j =0

�
�Rt ( n)

j +1
� Rt ( n)

j

�
�2

:

It is well known (see, e.g., Lipster and Shiryaev [2]) that

Sn (t) P!
Z t

0
� 2

s ds as n ! 1:
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Since� 2
t (! ) = f (Yt ) is a continuous process, we get

� 2
t (! ) = lim

�#0

F (t + �; ! ) � F (t; ! )
�

;

whereF (t; ! ) =
Rt

0 � 2
s(! ) ds.

Hence, the realization (yt )0�t�T of the processY can be found by the
formula yt = f �1 (� 2

t ), 0 � t � T.
We can use the reconstructed sample path (yt ), 0 � t � T, to estimate

the unknown parameter� in the drift coe�cient of di�usion process Y.
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Abstract 

Nowadays organizations are facing challenges which cannot be resolved by the traditional managerial solutions. 

EdTech area has a relatively short history, it is a sphere in dynamic development process. Learning and 

Development practices in organizations tend to integrate and use the novelties from different training platforms. 

It stared with Excel, E-mails and Google Docs and today is present by complex solutions in Training Management 

Systems. The dynamism, uncertainty and high competition in business organizations make them adapt their 

learning systems and corporate cultures. From the comparative values organizational culture framework of 

Robert E. Quinn and Kim S. Cameron 1 �F�R�P�S�D�Q�L�H�V���D�U�H���P�R�Y�L�Q�J���W�R���µ�F�O�L�S�¶���F�R�U�S�R�U�D�W�H���F�X�O�W�X�U�H���D�Q�G���Q�H�H�G���R�I���D���G�L�I�I�H�U�H�Q�W��

AI -based and scenario-based training system approaches.    

Key words: 



�x More service style by leaders 

�x Human resources development urgency (as reskilling, upskilling, etc.) 

�x Scaling of the learning programs (EdTech development) 

�x HR Branding and talent management (retaining talented employees with the help of 

�S�R�V�L�W�L�Y�H���R�U�J�D�Q�L�]�D�W�L�R�Q�¶�V���L�P�D�J�H�� 

Moreover, in organizations as reflecting overall culture development trends, there is a 

tendency to simulation of reality to become reality (simulacra and simulation of Jean 

Baudrillard3). In this system, the symbolic leadership and generally symbolic meanings play a 

greater role in managerial effectiveness. It is not enough to plan, organize, lead and control. It 

is a demand for managing intangible elements in communication, team work, relationships 

and meanings at work (purpose, mission, goals, vision, adjusted to employees needs, or at least 

in the average fit).  

 

Corporate University for Scaling Learning and Development 

In the light of the new meanings and directions, Corporate University takes a greater space in 

corporate Learning and Development programs (see Exhibit 1). Employee Learning usually 

considers newly hired employees (to train for the job and position and to teach standards) and 

current employees to keep them up-to-date (competences development; changes in conditions; 

changes of specific or general environment; company changes; talent pool/talent 

management). Moreover, the whole L&D System is set to promote high performance (Exhibit 

2). The skills are divided into two categories: hard and soft skills (Exhibit 3), which means that 



Exhibit 1 

 

 

Exhibit 2 
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Exhibit 3 

 

 

Corporate University resolved this demand and implements it in the complex strategic 



Exhibit 4 

 

 

EdTech Market Today 

EdTech is the practice of introducing information and communication technology tools into 

the classroom to create more engaging, inclusive and more individualized learning experience; 

hardware and software to enhance the quality of learning experience and get to high 

performance results. EdTech market has been permanently developing, as the demand is high. 

Nowadays it is present by the following services (Exhibit 5): 

�x LMS (Learning Management Systems) for asynchronous learning (e.g. Moodle) 

�x Online whiteboards (e.g. Miro and Mural) 

�x Engagement tools (for quizzes, polls, etc., as e.g. Mentimeter, Kahoot) 

�x E-learning (E-learning courses, as e.g. Gurucan, CourseLab) 

�x LXP (Learning Experience Platform) 

�x Video Conferencing and Webinars (as Zoom, Webex, MsTeams) 

�x VA and AR (Artificial Intelligence systems) 

�x TMS (Training Management Systems) for complex solutions (blended learning), (as 

Lanes, AdobeConnect) 
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Exhibit 5 

 

 

 

The major two complex and effective systems for corporate learning (not freelance trainers, 

but for organizations) are LMS and TMS. As well, video conferencing (Zoom, MsTeams and 

Webex) are actively used for the corporate learning, but are less comfortable, and needs a lot 

of additional solutions and integrations (with engaging tolls for example).  

LMS started with the elementary file drives, E-mails, Excel and Google docs, and nowadays is 

present as a complex asynchronous learning solution, or integrating video conferencing 

services for synchronous learning programs (Exhibit 6). 





Training Management Systems are developing the instruments and mechanics integrated in 

one platform to enhance the engagement and allow scenario training scaling. The main 

challenges for virtual learning and development are: 

�x Team work clarity and standards 

�x Scaling 

�x Engagement 

�x Measuring learning outcomes 

�x Optimizing the work of L&D Team 

�x Adapting the content for virtual learning 

�x Balancing workload 

�x Continuous improvement 

�x Feedback and assessment 

The results with Training Management System can be impressive. For example, with Lanes 

platform 4 (some cases examples).  

In Banking: Training sessions reduced to 3 hours, scalability enhanced, life-long learning 

culture and retention, new program design reduced to 1-2 days (compared to 2 weeks). 

Healthcare company: cost training per employee reduced from $700 to $7, expertise developed 

company-wide easily, improved engagement and learning results. 

Fast-food chain: 23% higher engagement rate, waiting period for leadership dramatically cut 

(from 6 months down to 3 days), expenditure on company-wide mandatory training has 

decreased by 39%. 

Nowadays the leaders among TMS platforms worldwide are AdobeConnect5 and Lanes6 

Exhibits 8-10).



Exhibit 8 AdobeConnect 

 

 

Exhibit 9 Lanes 

 

 

Exhibit 10 Lanes 
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2 G. GIORGOBIANI, V. KVARATSKHELIA, M. MENTESHASHVILI

2. Main Result

Investigating the Subgaussian random elements with values in Banach spaces
and analyzing the results of [2], R. Fukuda [3] came to a result, which is
improved in our Theorem 2 stated below.

Let (
; A ; P) be a probability space,� : 
 ! R1 be a real random variable
and E be a mathematical expectation symbol.

Theorem 2. Let p > q > 0 and for some C � 1

fEj� jpg1=p � C fEj� jqg1=q < 1: (1)

Then for any r; s, 0 < r; s � p, we have

fEj� jr g1=r � C � fEj� jsg1=s ;

where

� =

8
>>><

>>>:

0; if 0 < r � s � p;
1; if q � s < r�j



ON ONE CONNECTION BETWEEN THE MOMENTS 3

Now the case 0< s < r � q is left, which can be reduced to the previous
one.

�

Note that applying Kahane's inequality, Fukuda in his paper [3] as a constant
C � for r = p and s = 1 obtained the expression

C1+ pq
p�q � q � B �1 (1=q;

p
p � q

+ 1); (4)

whereB(�; �) is a beta function.
For the same values of the parameters (r= p; s = 1), the constant obtained

from Theorem 2 is equal to

C � =

(
C; if 0 < q � 1;

C
q( p�1)

p�q ; if 1 < q < p:
(5)

Using the computer program MAPLE we compared the values of (4) and (5) for
di�erent values of the parametersp and q, and it was found that the constant
obtained by Theorem 2 is better, although it needs analytical con�rmation.

Acknowledgment
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ABSTRACT 

In a high velocity environment retail market is growing  all over the world.  Retailers use all types 

of promotional activities in order to be differentiated in the market.  As a result of population and 

economic growth, retailers started to widen the application of various marketing in order to 

influence consumers. Peattie and Peattie (1994) stated that marketing activities are usually 

specific to a time period, place or customer group, which encourage a direct response from 

consumers or marketing intermediaries, through the offer of additional benefits. One of these 

activities is to use promotions (such as: discounts, buy one get one free, coupons, rebates, contests, 

cash-back offers and loyalty programs) and they directly influence individual to give quick 

decision and to finalize purchasing process. Since promotions are one of the most noticed 

marketing activities, promotions can greatly impact any company's market share and 

sustainability. It is therefore important to understand which promotions consumers prefer and 

also the effect of promotions on customers and their behavior. (Peattie, 1994) 

 

 

According to the American Marketing Association, as noted by Kotler and Keller, marketing can 

�E�H���G�H�I�L�Q�H�G���D�V���³�D�Q���R�U�J�D�Q�L�]�D�W�L�R�Q�D�O���I�X�Q�F�W�L�R�Q���D�Q�G���D���V�H�W���R�I���S�U�R�Fesses for creating, communicating, and 

delivering value to 



�F�R�P�S�D�Q�\�¶�V���P�H�V�V�D�J�H���D�F�U�R�V�V���W�R���W�K�H���F�R�Q�V�X�P�H�U�����7�K�H���I�R�X�U���P�D�L�Q���W�R�R�O�V���R�I���S�U�R�P�R�W�L�R�Q���D�U�H���D�G�Y�H�U�W�L�V�L�Q�J�����V�D�O�H�V��



 
o There  are discounts when products are temporarily offered at a lower price.  This form of 

promotion is used by organizations in order to increase sales and attract new customers. 

 
o Systems that allow customers to obtain a refund of some of the purchase price is known as 

cash-back.  When cash-back are offered immediately at the time of purchase, this is an 

instant rebate. An organization uses thi



After gathering information, it is evaluated against a consumer's wants, needs, preferences, and 

financial resources, which are available for purchase.  

At the purchase stage, the consumer will make a purchasing decision. The ultimate decision may 

be based on factors such as availability or price.  

At the post-purchase evaluation stage, the consumer will decide whether the purchase actually 

satisfies her needs and wants (Kotler, 2003) 

 

The research, which is used in this study, is descriptive in its nature. It can be explained by 

particular situation, telling some sort of things or some sort of noticeable facts. Research that 

explains the present situation instead of interpreting and making judgments is descriptive research 

(Creswell, 1994). The core purpose of descriptive research is to establish the accurateness of 

developed hypothesis that reflect the present position. This kind of research gives knowledge 

about the current scenario and concentrate on past or present for an instance in a community 

quality of life or customer attitude toward any marketing activity (Kumar, 2005). 

 

The research was conducted in Carrefour, with a Carrefour consumer. Various products are the 

core business of the supermarket Carrefour. Their product offer is based on a number of 

unchanging principles, which are a broad selection, the lowest prices, the highest quality and 

compliance with manufacturing conditions �±





Brochures positioned in front of supermarkets are also very likely to cause sales. This is due to the 

fact that consumers like to check which products are on promotion at the time of their visit to the 

supermarket. Although consumers may have an intended shopping list while visiting the 

supermarket, the discovery of product under promotion always pushes towards spending money 

on discounted items.  

In case of promotion, which enable consumers to save money, they 





A stochastic model of predator-prey
population dynamics

T. Kutalia and R. Tevzadze

Abstract

Abstract. We present results of an analysis for a randomized
three-dimensional predator-prey model representing the dynamics
of wolf-deer interactions.

1 Introduction

We study a predator { prey stochastic model (initiated by R. Chitashvili)
in discrete and continuous time. For this we define the transition proba-
bilities and Markov chain realization by the random difference schemes
as well as the systems of stochastic differential equations. We show that
in case of scaling, the solution of the system approaches the solution of
the equation of ordinary differential equation. We present the graphs
of these solutions for the specific parameter set and different initial
conditions. Graphs illustrate the equilibrium points which the system
approaches in infinite time.

2 The discrete time Model

Let us consider two populations: deer and wolves and assume that deer
divide into the group of strong and week ones. Denote by x; y; z the
number of strong deer, week deer and wolves respectively.

1
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Let � � (x; y; z); � � (x; y; z); � � (x; y; z); (x; y; z) 2 N 3 be intensity of tran-
sitions

(x; y; z) ! (x � 1; y; z); (x; y; z) ! (x; y � 1; z); (x; y; z) ! (



where "n is i.i.d. with uniform distribution, define Markov chain with
such transition probabilities. Indeed

P(X n+1 = X n � 1; Yn+1 = Yn ; Zn+1 = Zn jX n ; Yn ; Zn ) = P(X n+1 = X n � 1jX n ; Yn ; Zn )

= P(I (" n <p + (X n ;Yn ;Z n )) � I (p+ (X n ;Yn ;Z n ))�" n <p + (X n ;Yn ;Z n )+p � (X n ;Yn ;Z n )) = �1)jX n ; Yn ; Zn )

= P(" n < p � (X n ; Yn ; Zn )jX n ; Yn ; Zn ) = p� (X n ; Yn ; Zn )

and at cetera.
Assume that the share of strong deer increases proportionally to

fraction of strong deer pairs into all deer pairs, i.e. by intensity (x +
y) x2

(x+y )2 . Similarly for week deers we get intensity (x + y)(1 � x2

(x+y )2 ). The
mortality of strong and week deer is defined as dsx + esxz; dwy + ewyz
respectively. We define the rate of fecundity and mortality of wolfs as:
�z + � 0(x + y); �z +  0 z2

x+y . Therefore

� + (x; y; z) =
x2

x + y
; � � (x; y; z) = ( dsx + esxz);

� + (x; y; z) =
(x + y)2 � x2

x + y
; � � (x; y; z) = (d wy + ewyz);

� + (x; y; z) = �z + � 0(x + y); � � (x; y; z) = �z +  0 z2

x + y
:

We take es = ds = 0:2; ew = dw = 0:5; � = �; � 0 = 1;  0 = 1 and
(X 0; Y0; Z0) = (8 ; 8;8). We graphically present the solution of (1) below

3
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Figure 1: graph of random dynamics

3 The continuous time Model

Let N (duds) be the Poisson point process driven by Lebesgue measure
duds and ~N (duds) = N (duds) � duds. Then the Markov chain in contin-
uous time is defined by the SDE

X t = X 0 +
Z t

0

Z 1

0
(I (u<� + (X s� ;Ys� ;Z s� )) � I (� + (X s� ;Ys� ;Z s� ))u<�(X s� ;Ys� ;Z s� ))N (duds);

Yt = Y0 +
Z t

0

Z 1

0
(I (�(X s� ;Ys� ;Z s� )�u<(�+� + )(X s� ;Ys� ;Z s� ))

�I (�+� + )(X s� ;Ys� ;Z s� ))�u<(�+�)(X s� ;Ys� ;Z s� )) )N (duds);

Z t = Z0 +
Z t

0

Z 1

0
(I ((�+�)(X s� ;Ys� ;Z s� )�u<(�+�+� + )(X s� ;Ys� ;Z s� ))

�I ((�+�++)(Xs�;Ys�;Zs� )�u<(�+�+)(Xs�;Ys�;Zs� )) )N (duds)





In our model

� + =
X 2

X + Y
; � � = ( dsX + esXZ );

� + =
(X + Y)2 � X 2

X + Y
; � � = ( dwY + ewY Z);

� + = �Z + � 0(X + Y); � � = �Z +  0 Z 2

X + Y
:

Therefore

dX t =
�

X 2

X + Y
� (dsX + esXZ )

�
dt + dL(t)

dYt =
�

(X + Y)2 � X 2

X + Y
� (dwY + ewY Z)

�
dt + dM (t)

dZt =
�

�Z + � 0(X + Y) � �Z +  0 Z 2

X + Y

�
dt + dN(t):

In deterministic case one obtains

_x =
x2

x + y
� (dsx + esxz);

_y =
(x + y)2 � x2

x + y
� (dwy + ewyz);

_z = �z + � 0(x + y) � �z �  0 z2

x + y
:

(2)

Such type of population model was studied in [1].
Remark. If ~y = x + y then

_x =
x2

~y
� x(ds + esz);

_~y = ~y(1 � dw � ewz) + x(dw + ewz � ds � esz);

_z = (� � � )z + � 0~y �  0z
2

~y
:

6

61



In particular case of parameters we have

_x =
x2

x + y
� 0:2x(1 + z);

_y =
(x + y)2 � x2

x + y
� 0:5y(1 + z); (3)

_z = (x + y) �
z2

x + y
:

or for (x; ~y; z) = ( x; x + y; z)

_x =
x2

~y
� 0:2x(1 + z);

_~y = ~y � (0:5~y � 0:3x)(1 + z);

_z = ~y �
z2

~y
:

7
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Figure 2: phase portrait of system (3)

The solution of

0 =
x2

x + y
� 0:2x(1 + z);

0 =
(x + y)2 � x2

x + y
� 0:5y(1 + z);

0 = ( x + y) �
z2

x + y
:

defines the equilibrium points of the population system, which are marked
in Figure 2 by red points.

8

63





 
Healthcare Technologies and Big Data 

 
 
Natalia Kalandarishvili* 
Tamaz Uzunashvili* 
 
*Georgian American University, Business School, 10 Merab Aleksidze Str., 0160, Tbilisi, 
Georgia. 

 
 

Abstract 
 

An introduction of AI technologies in healthcare 
determined fundamental changes in healthcare. We are 
presenting major trends of adopted AI technologies 
worldwide in healthcare and current progress and 
challenges of AI adoption in Georgian healthcare systems. 
 

 

Using technologies in Healthcare System is a part of the global healthcare development 

strategies. Capturing data and using them for analytic purposes gives possibilities to 

measure performance of the overall system.  

Artificial Intelligence can serve as robust decision support system for healthcare 

workers, doctors, nurses, healthcare executives, payers, and governing bodies.  

AI is based on the data which is processed by healthcare system players. Key players in 

Data production are doctors and nurses, who have the first access to the information 

generated during patient care.   

AI can simplify the life of all health system workers by performing tasks which must be 

done by humans in a faster and cost-effective way.  

 

Artificial Intelligence is the fastest growing business in the world. According to the CB 

INSIGHTS  2021 [1]  



AI is reinventing modern healthcare through machines that can predict, comprehend, 

learn, and act.  

AI platforms are based on big data sources and during analyzing medical data and 

predicting or coming up with diagnosis, AI can be the way more trusted that humans, 

who have limited capabilities, according to the physiological and anatomic specification 

of the human brain.  

AI is using data generated by healthcare players, including doctors, nurses, healthcare 



2. Using AI can help pathologists to come up with more precise diagnosis. 

3. AI algorithms are used to diagnose and treat illness.  

4. ���/�[�•���������‰���o�����Œ�v�]�v�P���‰�o���š�(�}�Œ�u�•�����Œ�����µ�•�������š�}�����v���o�Ç�Ì�����Œ�����]�}�o�}�P�Ç���]�u���P���•�U�����o�}�}�����š���•�š�•�U��

EKGs, genomics, patient medical history and support doctors in decision making 

process.  

5. AI are used for screening purposes to detect cancer at the earliest stage and 

support diagnostic and treatment process by algorithms.  

6. AI is used to identify harmful bacteria in patient blood and laboratory settings.  

7. AI is used in Gastroenterology to identify early signs of GI diseases.  

8. AI is used in Imaging technologies like Ultrasound, CT, MRI, and X-Ray for 

diagnostic purposes. Using big data in their applications, systems can come up 

with more precise diagnosis, compared with doctors.  

9. AI is used in research for clinical trials for new treatment tools, drug 

development etc.  

10. Combining AI and physics, AI can support drug development process and it can 

be done within days, rather than weeks.  

 

Big organizations started to use AI applications during their everyday operations.  

Here are several examples of how AI helped healthcare organizations perform on a 

higher quality level with better outcomes in patient care.  

Cleveland Clinic in United States started partnership with IBM [4] to build an 

infrastructure that supports research in areas such as genomics, chemical and drug 

discovery, and population health.  

John Hopkins Medicine [5] 



AI can be used in healthcare management field, which generates huge amounts of data 

and usability of these data can be achieved by AI technologies. AI can analyze a data 

which can be useful for public and population health purposes, for supporting drug 

�����À���o�}�‰�u���v�š�� �‰�Œ�}�����•�•�� �]�v���‰�Z���Œ�u�����Ç���(�]���o���U���]�v�� ���v���o�Ç�Ì�]�v�P���‰���Ç���Œ�•�[�� �]�v�(�}�Œ�u���š�]�}�v�� ���v���� �Z��lping 

them to predict healthcare costs and make systems more cost-effective, can support 

governing regulatory agencies in population health management and planning 

purposes.  

 

Systems used in Georgian Healthcare: 

1. Mydoc.ge https://mydoc.ge �t already it is used, and they have some statistics.  

2. https://www.heaps.ai/index_in.html �t 
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